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Solution 5

1. Determine whether Z and Q are complete sets in R.

Solution. Z is a closed subset so it is complete. On the other hand, the closure of Q is
R, it is not complete.

2. We define a metric on N, the set of all natural numbers by setting

d(n,m) =

∣∣∣∣ 1

n
− 1

m

∣∣∣∣ .
(a) Show that it is not a complete metric.

(b) Describe how to make it complete by adding one new point.

Solution. The sequence {n} is a Cauchy sequence in this metric but it has no limit. Its
completion is obtained by adding an ideal point called∞ and define d̃(x, y) = d(x, y) when
x, y ∈ N and d̃(x,∞) = 1/x for all x ∈ N and d̃(∞,∞) = 0.

3. Optional. Let (X, d) be a metric space. Fixing a point p ∈ X, for each x define a function

fx(z) = d(z, x)− d(z, p).

(a) Show that each fx is a bounded, uniformly continuous function in X.

(b) Show that the map x 7→ fx is an isometric embedding of (X, d) to Cb(X) (shorthand
for Cb(X,R)) . In other words,

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Deduce from (b) the completion theorem.

This approach is much shorter than the proof given in notes. However, it is not so inspiring.

Solution.

(a) From |fx(z)| = |d(z, x) − d(z, p)| ≤ d(x, p), and from |fx(z) − fx(z′)| ≤ |d(z, x) −
d(z′, x)|+ |d(z′, p)−d(z, p)| ≤ 2d(z, z′), it follows that each fx is a bounded, uniformly
continuous function in X.

(b) |fx(z)− fy(z)| = |d(z, x)− d(z, y)| ≤ d(x, y), and equality holds taking z = x. Hence

‖fx − fy‖∞ = d(x, y), ∀x, y ∈ X.

(c) Let Y0 = {fx : x ∈ X} ⊂ Cb(X). Let Y be the closure of Y0 in the complete metric
space (Cb(X), ρ) with sup-norm ρ. Then (Y, ρ) is a completion of (X, d).

4. Let T be a continuous map on the complete metric space X. Suppose that for some k,
T k becomes a contraction. Show that T admits a unique fixed point. This generalizes the
contraction mapping principle in the case k = 1.

Solution. Since T k is a contraction, there is a unique fixed point x ∈ X such that
T kx = x. Then T k+1x = T kTx = Tx shows that Tx is also a fixed point of T k. From the
uniqueness of fixed point we conclude Tx = x, that is, x is a fixed point for T . Uniqueness
is clear since any fixed point of T is also a fixed point of T k.
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5. Show that the equation x = 1
2 cos2 x has a unique solution in R.

Solution. Let Tx = 1
2 cos2 x. Then T ′(x) = −1

2 sin 2x so |T ′| ≤ 1/2. It follows that
|Tx − Ty| ≤ 1

2 |x − y|, T is a contraction. By the fixed point theorem, we conclude that
x = 1

2 cos2 x has a unique solution.

6. Show that the equation 2x sinx− x4 + x = 0.001 has a root near x = 0.

Solution. Here Ψ(x) = 2x sinx − x4. We need to find some r, γ so it is a contraction.
We have

|Ψ(x1)−Ψ(x2)| =
∣∣2x1(sinx1 − sinx2) + 2(x1 − x2) sinx2 − (x41 − x42)

∣∣
=

∣∣2x1 cos c(x1 − x2) + 2(x1 − x2) sinx2 − (x21 + x22)(x1 + x2)(x1 − x2)
∣∣

≤ (2r + r + (2r2)(2r))|x1 − x2| .

Taking r = 1/4, γ = 2r + r + (2r2)(2r) = 13/16 < 1. By the Perturbation of Identity
Theorem, the equation 2x sinx − x4 + x = y is solvable for any y satisfying |y| ≤ R =
(1− γ)r = 0.0468, including y = 0.001.

7. Let f : R → R be C2 and f(x0) = 0, f ′(x0) 6= 0. Show that there exists some ρ > 0 such
that

Tx = x− f(x)

f ′(x)
, x ∈ (x0 − ρ, x0 + ρ),

is a contraction. This provides a justification for Newton’s method in finding roots for an
equation.

Solution. T ′(x) =
f(x)f ′′(x)

f ′(x)2
. Since f is C2 and f(x0) = 0, f ′(x0) 6= 0, it follows that T

is C1 in a neighborhood of x0 with T (x0) = x0, T
′(x0) = 0 and there exists some ρ > 0

|T ′(x)| ≤ 1

2
, x ∈ [x0 − ρ, x0 + ρ].

As a result, T is a contraction in [x0−ρ, x0 +ρ]. By Contraction Mapping Principle, there
is a fixed point for T . From the definition of T , this fixed point is a root for the equation
f(x) = 0.


